

# Standard-Model Higgs Searches at CDF Run II

BEACH 04 Chicago IL June 27 – July 03, 2004 Shan-Huei Chuang



on behalf of the **CDF Collaboration** 

#### Outline

- Introduction
- About the SM Higgs Boson
- Existing SM Higgs Results
- Higgs Sensitivity at TeVatron
- TeVatron Performance
- CDF II Detector
- CDF II Overall Higgs Search Status
- CDF II SM WH-Ivbb Analysis
- CDF II SM H→WW→IvIv Analysis
- Conclusion

## Introduction

- Standard Model has explained well high-energy phenomena so far.
  - Higgs boson remains un-observed
  - last missing piece.
- Higgs boson is the source of electroweak symmetry breaking dynamics.
  - whence responsible for the mass generation of electroweak gauge bosons and fermions.
- Higgs boson mass can be an indicator of new physics where the Standard Model will fail.
  - $ightharpoonup \mathbf{M}_{H}$  is critical to the determination of  $\Lambda$ , the energy scale at which SM holds no more. Could SM still work at the Plank scale (10<sup>19</sup> GeV)?



# Run I SM Higgs Results

- measured in four channels:
  - WH → Ivbb higher limits

    due to slight

    fluctuation up
  - $\sim$  ZH  $\rightarrow$  I+I-bb
  - ZH → vvbb lowest limits
- $\stackrel{\text{\tiny sed}}{\text{\tiny was}}$  used L<sub>int</sub> ≤ 106 ± 4 pb<sup>-1</sup>
- binned likelihood in di-jetmass M<sub>bb</sub> for setting limits
- $\sigma$ ·BR<sub>comb</sub> ~ 15-50  $\sigma$ ·BR<sub>SM</sub>, still far from examining the SM prediction



benchmark :  $\sigma(pp \rightarrow VH) \cdot BR(H \rightarrow b\overline{b}) < 7.4 \text{ pb } @ 95\% \text{ CL for M}_H = 130 \text{ GeV}$ 

## Electroweak Constraints

Precision measurement of electroweak parameters, such as

M<sub>top</sub> the top quark mass

M<sub>w</sub> the W boson mass

leads to tight constraints on M<sub>H</sub> the Higgs mass.

**Another Thing CDF (and D0) Can Do Well** 



light Higgs preferred by data

$$\delta M_W \propto (M_{top}^2, In(M_H))$$

M<sub>top</sub> reduced by 5 GeV, M<sub>H</sub> limit reduced by 35 GeV

Madratic logarithmic

#### **TeVatron**

TeVatron is currently the only place capable of probing the Higgs sector





In comparison to Run I: luminosity  $\uparrow > 20X$   $\sigma(gg \rightarrow H) \uparrow 40\%$   $\sigma(qq \rightarrow VH) \uparrow 20\%$  b trigger and tagging  $\uparrow$   $E_{jet}$  resolution  $\uparrow$  lepton acceptance  $\uparrow$ 



Collider Run II Peak Luminosity

# Higgs Sensitivity at TeVatron

with the upgraded detectors and improved b-tagging efficiency, we need 20% less luminosity than SHWG's estimate in 98-99 to reach the SM-sensitive zone, combining all the bests we can do, including search channels and experiments.



## CDF II Detector

Central Calorimeter (E.H) Higgs analyses Central Muon Wall Calorimeter (H) demand every Solenoid new component of Plug Calorimeter (E/H) the detector!!!!! upgraded
Forward Muon DAQ new FE new displaced-track trigger new new Forward Calorimeter (E) Luminosity Monitor data-taking efficiency ~ 85-90% Time of Flight new Central Outer Tracker 11ew important for b-tagging Intermediate Silicon Silicon Vertex Detector new

# CDF II Detector



# Lepton ID at CDF II



# b-Tagging at CDF II

B hadron's flight time  $c\tau \sim 450 \mu m$   $\Rightarrow Lxy \equiv c\tau \cdot \beta \gamma$  can be detected by SVX II and used for b-tagging

#### secondary vertex algorithm:

- 1) Select tracks that have large impact parameter **d**<sub>0</sub>
- 2) Apply a vtx fitting algorithm to reconstruct a displaced vertex

b-jets are tagged with Sec.Vtx.Alg.







# CDF II Higgs Project

- $\bowtie$  SM ZH→IIbb where I={e, μ}
- SM ZH→vvbb
- SM WH→Ivbb
- SM WH→WWW→|±v|±vjj
- SM H→WW→IvIv
- MSSM H→ττ @ large tanβ
- MSSM Hbb→bbbb @ large tanβ
- SUSY L-R symmetric H<sup>++</sup>→I<sup>+</sup>I<sup>+</sup>I
- 2HDM H<sup>+</sup>
- **LFV** Higgs

will search



dominant decay modes

# SM WH-Ivbb Search at CDF II

- Golden channel of Higgs boson search at TeVatron
  - Largest branching ratio for M<sub>H</sub> < 135 GeV
  - Second largest cross-section
  - Not so bad QCD background as gg→H→bb
  - Highest achievable S/√(S+B) in the most-favored Higgs

mass region

- № 162 pb<sup>-1</sup> data collected from Feb 02 to Sep 03
- Alpgen and Herwig MC plus detailed detector simulation



#### Event Selection –

One central isolated non-conversion electron or non-cosmic muon

Lepton Et > 20 GeV

Missing Et > 20 GeV

Jet Et > 15 GeV

₩ Jet |n| < 2.0

Two jets, at least one b-tagged

total WH acceptance ~ 1.8 ± 0.4 %



 $m_{u} = 115 \text{ GeV/c}^{2}$ 

CDF Run II Preliminary (162 pb<sup>-1</sup>)

Acceptance(%)

1.5

0.5

0

used the W+2jets bin to set limits on WH production:

- expected ~0.29 signal events
- expected ~60.6 background
- observed 62 events from data

#### CDF Run II Preliminary (162 pb<sup>-1</sup>)

| Di Kuli ii i iciiiiiiaiy (102 pb )   |                                    |                         |                         |                           |  |  |  |  |
|--------------------------------------|------------------------------------|-------------------------|-------------------------|---------------------------|--|--|--|--|
| Background                           | W <sup>±</sup> + 1 jet             | W <sup>±</sup> + 2 jets | W <sup>±</sup> + 3 jets | $W^{\pm}$ + $\geq$ 4 jets |  |  |  |  |
| Events before tagging                | 13417                              | 2072                    | 313                     | 82                        |  |  |  |  |
| Mistags                              | $36.20 \pm 5.40$                   | $14.07 \pm 2.10$        | $3.97 \pm 0.68$         | $2.04 \pm 0.39$           |  |  |  |  |
| $W^\pm + bar b$                      | $18.58 \pm 4.82$                   | $12.05\pm2.19$          | $2.82 \pm 0.57$         | $0.99 \pm 0.25$           |  |  |  |  |
| $W^\pm + c ar c$                     | $9.44 \pm 2.94$                    | $5.19 \pm 1.14$         | $1.04\pm0.25$           | $0.35 \pm 0$ 11           |  |  |  |  |
| $W^\pm + c$                          | $33.08 \pm 7.83$                   | $7.86 \pm 2.08$         | $1.36 \pm 0.39$         | $0.28 \pm 0.0$            |  |  |  |  |
| Diboson/ $Z^0  ightarrow 	au^+	au^-$ | $1.74 \pm 0.30$                    | $2.25 \pm 0.34$         | $0.59 \pm 0.13$         | $0.10 \pm 0.03$           |  |  |  |  |
| QCD                                  | 22.24 2.59                         | $10.31\pm1.66$          | $2.44 \pm 0.57$         | $0.58 \pm 0.18$           |  |  |  |  |
| t ar t                               | $0.02 \pm 0.07$<br>$0.14 \pm 0.15$ | $5.05 \pm 0.64$         | $12.65 \pm 10$          | $20.10 \pm 2.49$          |  |  |  |  |
| single top                           | $1.14 \pm 0.15$                    | $3.76 \pm 0.49$         | $0.90\pm0.12$           | $0.17 \pm 0.03$           |  |  |  |  |
| Total Background                     | $122.84 \pm 11.40$                 | $60.55 \pm 4.43$        | $25.77 \pm 2.16$        | $24.62 \pm 2.59$          |  |  |  |  |
| Observed positive tags               | 135                                | 62                      | 23                      | 21                        |  |  |  |  |
|                                      |                                    |                         |                         |                           |  |  |  |  |



# data agrees with MC well

main backgrounds

- W+jets
- mis-tag
- QCD and top

Run I 95% CL limits: 14–19 pb

#### Run II:

| M <sub>H</sub> (GeV) | 110 | 115 | 120 | 130 |
|----------------------|-----|-----|-----|-----|
| σ·B (pb) <           | 4.8 | 4.7 | 4.5 | 3.9 |



| source              | CEM   | CMUP  | CMX   |  |
|---------------------|-------|-------|-------|--|
| Lepton ID           | 5%    |       |       |  |
| Trigger             | 0.06% | 0.79% | 0.63% |  |
| PDF                 | 1%    |       |       |  |
| ISR/FSR             | 19%   |       |       |  |
| Jet                 | 3%    |       |       |  |
| SECVTX              | 8.6%  |       |       |  |
| Jet Energy Smearing | 1%    |       |       |  |
| Total               |       | 22%   |       |  |

estimated systematic uncertainties

■ binned max likelihood L = ∏ u<sup>N</sup> e<sup>-u</sup> / N!

where u is the number of expected S+B and N the number of observed events in each mass bin.

great improvement on production limits owing to improvement on

- di-jet mass resolution
- Ilmit extraction skill

advancements are planned on

- plug electron inclusion
- b-tagging
- jet energy resolution

currently using only calorimeter info; planning to integrate tracker info later

#### Results Are Not Final

In  $m_H=115~{\rm GeV}/c^2$  case,

|                 | Run2              | Run1 Higgs sensitivity rep |       |          | sensitivity report |
|-----------------|-------------------|----------------------------|-------|----------|--------------------|
|                 | This Analysis     | Cut Based                  | NN    | CASE 0 † |                    |
| Mass Resolution | 17% <sup>††</sup> | 15%                        | 15%   | 15%      | 10%                |
| S               | 0.29              | 0.31                       | 0.24  | 0.13     | 0.13               |
| B               | 28.3              | 50.7                       | 18.3  | 3.2      | 2.1                |
| $S/\sqrt{B}$    | 0.052             | 0.04                       | 0.056 | 0.075    | 0.09               |



- platinum for M<sub>H</sub> > 135 GeV
  - Largest branching ratio
  - Largest cross-section
  - No QCD contamination in dilepton final state
- of WW background from the analysis of CDF II WW cross-section measurement
- powerful Higgs discriminator– spin zero
- 184 pb<sup>-1</sup> data collected from May 02 to Sep 03
- used PYTHIA MC with NLO correction through detailed detector simulation (cdfSim)



#### H>WW>lvlv

plots from the analysis of WW cross-section measurement showing the major background of H→WW is under control

CDF measures  $\sigma(p\bar{p}\to WW)=14.3^{+5.6}_{-4.9}~({\rm stat})\pm 1.6~({\rm syst})\pm 0.9~({\rm lum})~{\rm pb}$  in agreement with the Standard Model prediction







#### **select events** with

- "well-detected" 2 electron/muons
- lepton Et > 20 GeV
- $|\eta_e| < 2.0; |\eta_u| < 1.0$
- opposite charge signs, I+I-
- missing Et (met) > 25 GeV
- no jets with Et > 15 GeV and  $|\eta|$  < 2.5
- $\Delta \Phi(\text{met, lep/jet}) > 20^{\circ} \text{ for met} < 50 \text{ GeV}$
- dilepton invariant mass M<sub>II</sub> < ~½ M<sub>H</sub>



MC study shows the tendency of small H→WW dilepton invariant mass, which is not a property of other SM background processes..

use a binned maximum likelihood method on dilepton azimuthal angular separation ΔΦ<sub>II</sub> distribution of selected events to extract 95% CL limits on σ BR(gg→h<sup>0</sup>→WW)

| M <sub>H</sub> (GeV) | 180             |
|----------------------|-----------------|
| ttbar                | $0.02 \pm 0.01$ |
| ZZ                   | $0.06 \pm 0.01$ |
| WZ                   | $0.18 \pm 0.02$ |
| DY π                 | $0.03 \pm 0.01$ |
| DY μμ                | $0.43 \pm 0.19$ |
| DY ee                | $0.87 \pm 0.44$ |
| fakes                | 0.81 ± 0.25     |
| WW                   | $6.49 \pm 0.76$ |
| total bg             | $8.90 \pm 0.98$ |
| HWW                  | 0.17 ± 0.02     |
| data                 | 8               |

MH = 180 GeV
as an example



CDF Run II Preliminary, L<sub>int</sub> ≈ 200 pb<sup>-1</sup>



signal and background expectations

cluster mass  $M_C \equiv \sqrt{(pt_{\parallel}^2 + M_{\parallel}^2)} + missing Et$ 











On fitting  $\Delta\Phi_{||}$  distributions We separate the to-be-fitted into 4 classes according to expected distribution shapes:

- > data in question
- > H→WW small ΔΦ<sub>||</sub>
- WW large ΔΦ<sub>II</sub>
- > sum of other SM any

|   | 11                                   |                               | 11          |             |
|---|--------------------------------------|-------------------------------|-------------|-------------|
|   | M <sub>H</sub> (GeV)                 | 140                           | 160         | 180         |
|   | σ(gg→h <sup>0</sup> ) (pb)           | 0.45                          | 0.30        | 0.21        |
|   | BR (h⁰→WW)                           | 0.48                          | 0.90        | 0.94        |
|   | L <sub>int</sub> (pb <sup>-1</sup> ) | MININE                        | 184 ± 11    |             |
|   | acceptance (%)                       | 0.124±0.012                   | 0.402±0.040 | 0.449±0.045 |
|   | SIGNAL (evt)                         | $0.10 \pm 0.01$               | 0.22 ± 0.03 | 0.17 ± 0.02 |
|   | WW BG (evt)                          | 3.51 ± 0.41                   | 4.45 ± 0.52 | 6.49 ± 0.76 |
|   | other BG (evt)                       | $0.68 \pm 0.16$               | 1.34 ± 0.35 | 2.40 ± 0.55 |
|   | observed (evt)                       | (/// (A <mark>2</mark> // 4); | 3           | 6           |
| t | - counting (pb)                      | 18.4                          | 6.2         | 8.8         |
| t | –ΔΦ-fitting (pb)                     | 18.1                          | 6.0         | 8.0         |
| t | – ΔΦ-fitting (pb)                    | 17.8                          | 5.6         | 6.4         |
|   |                                      |                               |             |             |

95% C.L. limit

expected limit

95% C.L. limit

#### $H\rightarrow WW\rightarrow IvIvI$

#### 🕸 No Run I Results 💢 Run II



CDF Run II Preliminary, L<sub>int</sub> ≈ 200 pb<sup>-1</sup>

| M <sub>H</sub> (GeV) | 140  | 150 | 160 | 170 | 180 |
|----------------------|------|-----|-----|-----|-----|
| σ·B (pb) <           | 17.8 | 9.4 | 5.6 | 5.6 | 6.4 |



#### Results Are Not Final

can be advanced

#### by way of

- lowering final-state lepton pt(s)
- including jet bin(s)
- cutting on more variable(s) that discriminates Higgs signal from backgrounds, e.g. M<sub>C</sub>
- extending to lower Higgs mass

## Conclusion

SM Higgs hunting in Run II at CDF has started.

- We need more data.
- Sensitive tests of the Standard-Model Higgs sector is possible at TeVatron Run II, with designed luminosity and full strength of both experiments.
- We should/can now set constraints on the Higgs mass with precision top and W measurements.

First results have popped out, to our excitement.



more will follow

# Backup

**TABLE 28.** Summary of the optimized cuts additional to those in Eqs. (68)-(74) for various Higgs boson mass.

| $m_h \; [{ m GeV}]$                      | 140  | 150   | 160  | 170  | 180  | 190  |
|------------------------------------------|------|-------|------|------|------|------|
| $\cos \theta_{\ell_1}^*$                 | -    | < 0.6 | 0.35 | 0.35 | 0.55 | 0.75 |
| $\parallel E_T$                          | > 25 | 25    | 30   | 35   | 40   | 40   |
| $\min[M_T(\ell_1 E_T), M_T(\ell_2 E_T)]$ | > 40 | 40    | 75   | 80   | 85   | 75   |
| $M_T(\ell_1 \not\!\!E_T)$                | >60  | 60    | -    | -    | -    | -    |
| $m(\ell\ell)$                            | < 65 | 65    | 65   | 75   | 85   | -    |
| $p_T(\ell\ell)$                          | > 40 | 50    | 65   | 70   | 70   | 70   |
| $\theta(\ell\ell)$                       | <100 | 100   | 70   | 70   | 90   | 90   |
| $M_T$                                    | -    | >110  | 120  | 130  | 140  | 140  |

**TABLE 29.** Summary table for  $h \to W^*W^* \to \ell\bar{\ell}\nu\bar{\nu}$  signal for  $m_h = 140-190$  GeV and various SM backgrounds after the kinematic cuts of Eqs. (68)–(74) and the likelihood cut Eq. (77). The entry "fake  $j \to e$ " refers to the background where a jet mimics an electron with a probability of  $P(j \to e) = 10^{-4}$ . The backgrounds are independent

## Sensitivity Factors in H→WW→IvIv

with good lepton ID and specific cuts on

NOTE: SHWG's estimate was based on abundance of integrated luminosity....

the kinematics among final-state leptons and missing Et as function of the Higgs mass, substantial S/√B can be achieved



cluster mass

$$M_{C} = \sqrt{(pt_{ll}^{2} + M_{ll}^{2})} + Missing Et$$

| $m_h [{ m GeV}]$                     | 140   | 150   | 160  | 170  | 180  | 190  |
|--------------------------------------|-------|-------|------|------|------|------|
| $gg \rightarrow h$ [fb]              | 2.2   | 2.4   | 1.3  | 0.93 | 0.85 | 0.73 |
| associated $VH$ [fb]                 | 0.26  | 0.31  | 0.13 | 0.09 | 0.06 | 0.06 |
| VV fusion [fb]                       | 0.12  | 0.12  | 0.09 | 0.06 | 0.05 | 0.05 |
| signal sum [fb]                      | 2.6   | 2.8   | 1.5  | 1.1  | 0.96 | 0.83 |
| SM backgrounds [fb]                  | 39    | 27    | 4.1  | 2.3  | 3.8  | 7.0  |
| fake $j \to e$ [fb]                  | 5.1   | 3.4   | 0.34 | 0.15 | 0.08 | 0.45 |
| backgrounds sum [fb]                 | 44    | 30    | 4.4  | 2.4  | 3.8  | 7.5  |
| S/B                                  | 0.058 | 0.094 | 0.34 | 0.45 | 0.25 | 0.11 |
| $S/\sqrt{B}$ for 30 fb <sup>-1</sup> | 2.1   | 2.8   | 3.9  | 3.8  | 2.7  | 1.7  |

M<sub>C</sub> (GeV)

## Sensitivity Factors in WH→Ivbb

which particularly matters:

- lepton ID efficiency
- b-tagging efficiency
- di-jet mass resolution matters a lot!
  - therefore jet correction is important
  - $^{\circ}$  2% increase of  $\sigma_{M_{bb}}/M_{bb}$  from 10% results in 20% drop of statistic power of threshold integrated luminosity
- neural network's help

#### b-tagging improvement from SHWG to THSS





# LEP SM Higgs Results



#### Indirect searches

- For  $M_{top} = 174.3 \pm 5.1$  GeV,  $log M_H = 1.98^{+0.21}_{-0.22}$   $M_H = 96^{+60}_{-38}$  GeV  $M_H < 219$  GeV @ 95% CL
- For  $M_{top} = 178 \pm 4.3 \text{ GeV}$ ,  $log M_H = 2.07^{+0.20}_{-0.21}$   $M_H = 117^{+67}_{-45} \text{ GeV}$  $M_H < 251 \text{ GeV} @ 95\% \text{ CL}$
- **→** LARGE uncertainties!

LEP2 direct searches: M<sub>H</sub> > 114.4 GeV @ 95% CL